
This article was downloaded by: On: *16 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



To cite this Article Singh, Gurdip , Kapoor, I. P. S. and Pandey, D. K.(2002) 'Hexammine metal perchlorates as energetic burning rate modifiers', Journal of Energetic Materials, 20: 3, 223 – 244 To link to this Article: DOI: 10.1080/07370650208244822 URL: http://dx.doi.org/10.1080/07370650208244822

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## HEXAMMINE METAL PERCHLORATES AS ENERGETIC BURNING RATE MODIFIERS

Gurdip Singh,\* I. P. S. Kapoor and D. K. Pandey Chemistry Department, D. D.U. Gorakhpur University Gorakhpur- 273 009, India.

## ABSTRACT

Four transition metal hexammine perchlorates namely,  $[Cu(NH_3)_6](ClO_4)_2$ ,  $[Co(NH_3)_6](ClO_4)_2$ ,  $[Ni(NH_3)_6](ClO_4)_2$  and  $[Zn(NH_3)_6](ClO_4)_2$  have been prepared, characterized and used as ballistic modifiers in the combustion of hydroxy terminated polybutadiene (HTPB)-Ammonium perchlorate (AP) composite solid propellants. Burning rate was considerably enhanced with  $[Co(NH_3)_6](ClO_4)_2$  and  $[Cu(NH_3)_6](ClO_4)_2$ whereas moderately with  $[Ni(NH_3)_6](ClO_4)_2$  and  $[Zn(NH_3)_6](ClO_4)_2$  at low concentration (2% by wt.).  $[Co(NH_3)_6](ClO_4)_2$  was found to accelerate the burning rate by three fold at two percent concentration and it can be exploited as potential energetic burning rate modifier for HTPB-AP propellants. Further, ignition delay studies showed that the deflagration of propellants and AP was accelerated by these additives.

## **INTRODUCTION**

Preparation, explosive properties and thermal decomposition of transition metal hexammine perchlorates have already been reported<sup>1-4</sup>. However, no details of their role in burning rate modification of composite solid propellants are available in literature. Transition metal salts are known to modify the combustion behaviour of propellants. In continuation of our ongoing research programme on high energetic materials<sup>5-10</sup>, hexammine metal perchlorates have been prepared, characterised and their role as burning

Journal of Energetic Materials Vol. 20, 223-244 (2002) Published in 2002 by Dowden, Brodman & Devine, Inc. rate modifiers for HTPB-AP solid propellants have been investigated and results are reported in the present communication.

## **EXPERIMENTAL**

## Materials

Carbonates of copper, cobalt (BDH), nickel (Thomas Baker) and zinc (Sarabhai), 70% HClO<sub>4</sub> (Qualigens), ethanol (Hayman), liquor NH<sub>3</sub> (Ranbaxy), AP (Central Electrochemical Research Institute, Karaikudi, Chennai), HTPB and isophorone diisocyanate (IPDI) (VSSC, Thiruvananthapuram) and dioctyl adepate (DOA) (s.d. fine chemicals) were used as received without any further purification.

## **Preparation and Characterization of Hexammine Metal Perchlorates**

The metal perchlorates hexahydrates were prepared as reported earlier<sup>4</sup> by treating corresponding metal carbonates with 70% HClO<sub>4</sub> at room temperature. The metal perchlorates were washed with petroleum ether (Merck), recrystallised from distilled water and dried over fused CaCl<sub>2</sub> in desiccator. The hexammine metal perchlorates were prepared by treating ethanolic solution of corresponding metal perchlorates hexahydrates with liquor ammonia in stoichiometric amount at room temperature. The whole reaction mixture was cooled on crushed ice and crystalline complexes of different colours were washed with methanol (Ranbaxy), recrystallised from distilled water and vacuum dried over fused CaCl<sub>2</sub>. Their purity was cheked by thin layer chromatography (TLC). Moreover, these complexes were characterised by gravimetric method, IR (Impact 400) in KBr pellets and elemental analysis (Fission Instruments DP 200 series 2). Physical, spectral and elemental data are given in Table 1.

## Preparation of HTPB-AP Composite Solid Propellants

The HTPB-AP composite solid propellant samples (non-aluminised and aluminised) were prepared by dry mixing<sup>11</sup> of AP[100-200 and 200-400 mesh (3:1)] with finely powdered additives (2% by wt.) and other solid components. The solid material was mixed with HTPB in the ratio of 4:1. The binder part included the curing agent (IPDI) in equivalent ratio to HTPB and plasticiser (DOA, 30% to HTPB). Aluminium powder (17% by wt.) was used in aluminised propellant samples. The solid content was kept 80% in all the samples. During mixing of solid components with HTPB, a processing temperature of 50°C was mentained throughout and stirring was continued for 1 hour, after complete addition of solid components in small installment.

The propellants of 40 g batches were prepared using these hexammine metal perchlorates as ballistic modifiers and vacuum casted into aluminium plates having dimensions  $1\times3\times10$  cm. The samples were cured in an incubator at 60°C for ten days except in the case of propellant containing [Co(NH<sub>3</sub>)<sub>6</sub>](ClO<sub>4</sub>)<sub>2</sub> additive (curing time, 25 days). [Co(NH<sub>3</sub>)<sub>6</sub>](ClO<sub>4</sub>)<sub>2</sub> was found to be the best additive and hence samples of propellants were also prepared by varying its percentage (1, 2, 3, 4 & 5%).

## Measurement of Burning Rate

The cured propellant samples were cut into smaller pieces having dimensions  $0.7 \times 0.7 \times 9$  cm and burning rate was measured at ambient pressure by fuse wire technique. An average of three measurements was taken which are within experimental error and results are reported in Tables 2, 3 & 4.

## **Thermal Decomposition Studies**

In order to examine the role of these additives in the combustion of propellant samples (non-aluminised and aluminised), non-isothermal decomposition studies on propellants and AP, with and without additives were carried out in static air using indigenously fabricated TG apparatus<sup>12</sup> fitted with temperature indicator cum controller (Model CT 808 T, Century) at a heating rate of 5°C/min taking 20 mg of samples and bucket type platinum crucible (h= 1 cm & dia= 1 cm) as sample holder. The plots of percent decomposition ( $\alpha$ ) vs temperature (°C) are given in Figs 1, 2 & 3 while data profiles are given in Table 5.

## Ignition Delay (tid) and Ignition Temperature (IT) Measurements

These studies on propellants (non-aluminised & aluminised), AP and AP+additive samples were undertaken using tube furnace (TF) technique<sup>13</sup>. The samples were taken in an ignition tube (h= 5 cm & dia= 0.4 cm) and the time between the insertion of the sample tube into the TF and the moment of an ignition, noted with the help of a stopwatch, gave the value of t<sub>id</sub>. The accuracy of t<sub>id</sub> values was well within the limit of experimental error. Activation energy was calculated using following equation<sup>14-15</sup> and plots of log t<sub>id</sub> vs 1/T are given in Figs. 4, 5 & 6 respectively.

$$t_{id} = Ae^{E^*/RT}$$

where  $t_{id}$  = ignition delay, E\*= activation energy for ignition and T is absolute temperature. The values of E\* and IT for propellants, AP & AP+additives are reported in Table 6, 7 & 8 respectively.

## RESULTS AND DISCUSSION

The hexammine metal perchlorates are known to be explosive in nature and are reported<sup>2,16</sup> to decompose exothermally. The explosivity of these complexes seems to be due to the presence of both the oxidizing (ClO<sub>4</sub>) and reducing (NH<sub>3</sub>) groups in the same molecule and metal ions are acting as catalysts. The oxidation of ammonia can take place by ClO<sub>2</sub> or other oxidizing agent, which are formed by the decomposition of perchlorate groups<sup>5,6</sup>. The estimated values of percentage of each metal are in good agreement with those of theoretical values (Table 1), which confirms beyond doubt the formation of these complexes. Moreover, the characteristic absorption frequencies of metal-nitrogen bond, coordinated ammonia and perchlorate group are similar to those reported in Nakamoto<sup>17</sup>. The burning rate is enhanced in following order when hexammine metal perchlorates were used as burning rate modifiers for HTPB-AP propellants (Tables 2 & 3).

 $[Co(NH_3)_6](ClO_4)_2 > [Cu(NH_3)_6](ClO_4)_2 > [Ni(NH_3)_6](ClO_4)_2 \approx [Zn(NH_3)_6](ClO_4)_2.$ 

The three times enhancement in burning rate was observed with  $[Co(NH_3)_6](ClO_4)_2$  at 2% (by wt.) concentration, and thus it was found interesting to study its effect at various concentrations. The data reported in Table 4 clearly shows the maximum enhancement in burning rate at 2% of  $[Co(NH_3)_6](ClO_4)_2$ . However, a gradual decrease in the burning rate was observed at higher concentrations of this additive. A lower burning rate was observed in the case of aluminised propellants (Table 3) than the non-aluminised propellant samples (Table 2). This lowering in the burning rate may be due to lower percentage of AP in aluminised propellant samples.

Burning rate might be enhanced on account of acceleration of any of the following:

(i) AP decomposition

(ii) HTPB-AP propellant decomposition.

Non-isothermal TG thermograms reported in Figs 1, 2 & 3 show that incorporation of these additives cause increase in the rate of decomposition of non-aluminised and aluminised propellants and that of AP. This increase may be due to the catalysis of condensed phase and/or gas phase reactions, which inturn the increase of heat flux to the burning surface, and consequently burning rate is enhanced. TG data reported in Table 5 clearly show that decomposition temperatures are lowered when these additives are added to propellant and AP samples. However,  $[Co(NH_3)_6](ClO_4)_2$  was found to be the best among all the studied additives in lowering the decomposition temperature.

In order to study the effect of these ballistic modifiers on the deflagration of propellant and AP samples, ignition delay measurements were undertaken by incorporating these additives in all the samples.  $t_{id}$ , IT and E\* are lowered when 2% of each complex was added to propellant and AP samples (Tables 6, 7 & 8).  $[Co(NH_3)_6](ClO_4)_2$  is found to give lowest IT and E\* in all the samples. The catalytic activity of metal ions in ignition of propellants and AP is shown to be in order:

$$Co^{2+} > Cu^{2+} > Ni^{2+} \approx Zn^{2+}$$

As all these metal complexes are reported<sup>2,16,21</sup> to decompose to respective metal oxides, the freshly insitu formed metal oxides having finer particle size might be acting as catalyst during decomposition and combustion of propellant. However, metal ammonia complex are also reported<sup>18-20</sup> to facilitate proton transfer reaction during decomposition of AP.

Some of the transition metal hexammine perchlorates are very potential burning rate modifiers for HTPB-AP propellants.  $[Co(NH_3)_6](CIO_4)_2$  is the best among them at the tested conditions.

## ACKNOWLEDGEMENTS

Thanks are due to Head, Chemistry Department, DDU Gorakhpur University, Gorakhpur for laboratory facility, Dr. S. K. Pandey, New Custom House Laboratory, Mumbai for IR and elemental analysis and Indian Space Research Organisation (ISRO), Bangalore for financial support. Thanks are also due to Prof. S. C. Srivastava Dr. A. K. Srimal and Dr. B. P. Baranwal for helpful discussions during the preliminary stage of the work.

## REFERENCES

- W. R. Tomlinson, K. G. Ottoson and L. F. Audrieth, J. Am. Chem. Soc. <u>71</u>, 375, (1949).
- 2. R. A. F. Sherrif and A. K. Galway, J. Chem. Soc, 1705, (1967).
- 3. K. C. Patil and E. A. Secco, Can. J. Chem, 49, 3831, (1971).
- 4. K. C. Patil and V. R. Pai Verneker, Thermochim Acta, 15, 257 (1976).
- 5. G. Singh, I. P. S. Kapoor and S. M. Mannan, J. Energ. Mater., 13, 141, (1995).
- 6. G. Singh, I. P. S. Kapoor and S. M. Mannan, J. Therm. Anal., 46, 1751, (1995).
- 7. G. Singh, I. P. S. Kapoor and S. Jacob, Indian J. Engg. Mater. Sci., 5, 140, (1998).
- 8. G. Singh, I. P. S. Kapoor and S. M. Mannan, J. Energ. Mater., <u>12</u>, 113, (1994).

- G. Singh, I. P. S. Kapoor, S. M. Mannan and S. K. Tiwari, J. Ener. Mater., <u>16</u> (1) 31, (1998), 16 (2), 101, (1998).
- G. Singh, I. P. S. Kapoor, S. M. Mannan and S. K. Tiwari, J. Hazard. Mater., A, <u>68</u>, 155, (1999).
- 11. S. Krishnan and R. D. Swami, J. Propulsion and Power, 13, (2), 207, (1997).
- 12. G. Singh and R. R. Singh, Res. Ind., 23, 92, (1978).
- 13. G. Singh, S. K. Vasudeva and I. P. S. Kapoor, Indian J. Tech., 29, 589, (1991).
- N. Semenov, "Chemical Kinetics and Chain Reactions" (Clarendon Press, Oxford), chap. 18, (1935).
- 15. S. Freeman and S. Gardon, J. Phys. Chem., 60, 867, (1956).
- 16. K. C. Patil and V. R. Pai Verneker, Combust. Flame, 25, 387, (1975).
- 17. K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds" Wiley and Sons, New York, p 163, (1962).
- 18. L. Dauerman, AIAA J., 5, 192, (1967).
- 19. P. W. M. Jacobs and A. Russel Jones, AIAA J., 5, 829 (1967).
- 20. G. Keenan and R. F. Siegmund, J. Solid State Chem., 4, 362, (1972).
- 21. G. Singh and D. K. Pandey, J. Energ. Mater., In Press (2002).

| TABLE 1<br>Physical, Spectral and Elemental Data of Hexammine Metal Perchlorates |
|----------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------|

| Mobile         Motion         VICH-O1         Variance         VICH-O1         Variance         C           Blue         a:b:c         0.907         4.47         22.041         (17.42)         3500w         2940s         652s         1060w         428s         36n         (1:1:2)         (1:1:2)         (4:90)         (23.04)         (17.42)         3500m         3200w         626s         1090w         450s         (2:1:1)         (5:00)         (2:3:33)         (16.40)         700w         650s         1100w         442s         (1:1:2)         (5:00)         (2:3:33)         (16.31)         3300s         650s         1100w         442s         (2:1:1)         (5:00)         (2:0)         (2:0)         (2:0)         (2:1:1)         (2:0)         (2:0)         (1:0)         448s         (1:1:2)         (4:90)         (22:90)         (17.74)         3281s                                             | Mobile         Mobile         Mobile         Mobile         V(NH,), mark         V(CH-O)         VCH-O)         VCH-O)         Verance         C           Phase         R,         H         N         Metal         V(NH,), mark         V(CH-O)         VCH-O)         Verance         Ver        | Mobile         Mobile         Mobile         Mobile         Mobile         Mobile         Mobile         V(NH <sub>3</sub> ),, v(NH <sub>3</sub> | Compound                                                | Mol.<br>weight | Colour    | TLC     | ŧ.    | Elen<br>Obs | Elemental analysis (%)<br>Observed (calculated) | iis (%)<br>inted) | 1      |        | R     |         |       |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------|-----------|---------|-------|-------------|-------------------------------------------------|-------------------|--------|--------|-------|---------|-------|----------|
| Phase         R,         H         N         Metal         V(NHJ)_mode         V(CH=0)         V(CH=0) | Phase         R,         H         N         Metal         V(NHJ)_me         V(CH=0)         V(CH=0) | Phase         R <sub>1</sub> N         Metal         V(NHJ)_me         V(CI=0)         V(CI=0)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                |           | Mobile  |       |             | •                                               |                   |        |        |       |         |       |          |
| a:b:c       0.907       4.47       22.77       15.89       3500w       2940s       652s       1060w       428s         (1:1:2)       (4.90)       (23.04)       (17.42)       3500m       3200w       652s       1060w       428s         n       a:b:c       0.887       4.50       (23.04)       (17.42)       3500m       3200w       656s       1090w       450s         (2:1:1)       (5.00)       (23.33)       (16.40)       3380s       3300s       650s       1100w       442s         (2:1:1)       (5.00)       (23.33)       (16.31)       3380s       3300s       650s       1100w       442s         (2:1:1)       (5.00)       (23.33)       (16.31)       3347s       3281s       525s       1125w       448s         (1:1:2)       (4.90)       (22.90)       (17.74)       3281s       525s       1125w       448s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a:b:c       0.907       4.47       22.77       15.89       3500w       2940s       652s       1060w       428s         (1:1:2)       (4.90)       (23.04)       (17.42)       3500m       3200w       652s       1090w       450s         n       a:b:c       0.887       4.50       22.80       14.98       3500m       3200w       626s       1090w       450s         (2:1:1)       (5.00)       (23.33)       (16.40)       3380s       3300s       650s       1100w       442s         (2:1:1)       (5.00)       (23.33)       (16.31)       3300s       650s       1100w       442s         (2:1:1)       (5.00)       (23.33)       (16.31)       3347s       3281s       525s       1125w       448s         (1:1:2)       (4.90)       (22.90)       (17.74)       3281s       525s       1125w       448s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a:b:c $0.907$ $4.47$ $22.77$ $15.89$ $3500w$ $2940s$ $652s$ $1060w$ $428s$ (1:1:2)       (4.90)       (23.04) $(17.42)$ $850m$ $3200w$ $652s$ $1060w$ $428s$ (1:1:2)       (4.90)       (23.04) $(17.42)$ $3500m$ $3200w$ $626s$ $1090w$ $450s$ (2:1:1)       (5.00)       (23.33) $(16.40)$ $3300s$ $650s$ $1100w$ $442s$ (2:1:1)       (5.00)       (23.33) $(16.31)$ $3300s$ $650s$ $1100w$ $442s$ (2:1:1)       (5.00)       (23.33) $(16.31)$ $3347s$ $3281s$ $525s$ $1125w$ $448s$ (1:1:2)       (4.90)       (22.90) $(17.74)$ $3347s$ $3281s$ $525s$ $1125w$ $448s$ (1:1:12)       (4.90)       (22.90) $(17.74)$ $3147s$ $3281s$ $525s$ $1125w$ $448s$ (1:1:12)       (4.90)       (22.90) $(17.74)$ $3147s$ $525s$ $1125w$ $448s$ e arbit       0.825s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                |           | Phase   | Ŗ     | H           | z                                               | Metal             | v(NHa) | v(NHs) | (0-U) | V(CI-O) | V.M-M | .*<br>00 |
| (1:1:2)       (4.90)       (23.04)       (17.42)         n a:b:c       0.887       4.50       22.80       14.98       3500m       3200w       626s       1090w       450s         (2:1:1)       (5.00)       (23.33)       (16.40)       3300s       650s       1100w       442s         (2:1:1)       (5.00)       (23.33)       (16.31)       3300s       650s       1100w       442s         (2:1:1)       (5.00)       (23.33)       (16.31)       3347s       3281s       525s       1125w       448s         (1:1:2)       (4.90)       (22.90)       (17.74)       3281s       525s       1125w       448s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1:1:2)       (4.90)       (23.04)       (17.42)         n a:b:c       0.887       4.50       22.80       14.98       3500m       3200w       626s       1090w       450s         (2:1:1)       (5.00)       (23.33)       (16.40)       3380s       3300s       650s       1100w       442s         (2:1:1)       (5.00)       (23.33)       (16.31)       3300s       650s       1100w       442s         (2:1:1)       (5.00)       (23.33)       (16.31)       3301s       555s       1125w       448s         (2:1:1)       (5.00)       (23.33)       (16.31)       3347s       3281s       525s       1125w       448s         (1:1:2)       (4.90)       (22.90)       (17.74)       3281s       525s       1125w       448s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [Cu(NH <sub>3</sub> )6](CIO <sub>4</sub> ) <sub>2</sub> | 364.5          |           | a:b:c   | 0.907 | 4.47        | 22.77                                           | 15.89             |        | 2940s  | 652s  | 1060w   | 428s  | 618s     |
| Brown arb:c 0.887 4.50 22.80 14.98 3500m 3200w 626s 1090w 450s<br>(2:1:1) (5.00) (23.33) (16.40)<br>Violet arb:c 0.937 4.90 22.80 15.12 3380s 3300s 650s 1100w 442s<br>(2:1:1) (5.00) (23.33) (16.31)<br>White arb:c 0.825 3.90 21.84 16.32 3347s 3281s 525s 1125w 448s<br>(1:1:2) (4.90) (22.90) (17.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Brown arbr: 0.887 4.50 22.80 14.98 3500m 3200w 626s 1090w 450s<br>(2:1:1) (5.00) (23.33) (16.40) 3300s 650s 1100w 442s<br>Violet arbr: 0.937 4.90 22.80 15.12 3380s 3300s 650s 1100w 442s<br>(2:1:1) (5.00) (23.33) (16.31) (16.31)<br>White arbr: 0.825 3.90 21.84 16.32 3347s 3281s 525s 1125w 448s<br>(1:1:2) (4.90) (22.90) (17.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Brown a.b.c       0.887       4.50       22.80       14.98       3500m       3200w       626s       1090w       450s         (2:1:1)       (5.00)       (23:33)       (16.40)       3300s       650s       1100w       442s         Violet       a.b.c       0.937       4.90       22.80       15.12       3380s       3300s       650s       1100w       442s         White       a.b.c       0.825       3.90       21.84       16.31       3347s       3281s       525s       1125w       448s         (1:1:2)       (4.90)       (22:90)       (17.74)       3281s       525s       1125w       448s         mol, b = dimethylformamide, c = butanol-1, w =wide, m =medium & s = sharp.       : odine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         |                |           | (1:1:2) |       | (4.90)      | (23.04)                                         | (17.42)           |        |        |       |         |       |          |
| (2:1:1) (5.00) (23.33) (16.40)<br>Violet a:b:c 0.937 4.90 22.80 15.12 3380s 3300s 650s 1100w 442s<br>(2:1:1) (5.00) (23.33) (16.31)<br>White a:b:c 0.825 3.90 21.84 16.32 3347s 3281s 525s 1125w 448s<br>(1:1:2) (4.90) (22.90) (17.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2:1:1)       (5.00)       (23:33)       (16.40)         Violet       a:b:c       0.937       4.90       22.80       15.12       3380s       550s       1100w       442s         (2:1:1)       (5.00)       (23:33)       (16.31)       52.5s       1125w       448s         White       a:b:c       0.825       3.90       21.84       16.32       3347s       3281s       525s       1125w       448s         (1:1:2)       (4.90)       (22:90)       (17.74)       3281s       525s       1125w       448s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2:1:1)       (5.00)       (23:33)       (16.40)         Violet       a:b:c       0.937       4.90       22.80       15.12       3380s       3300s       650s       1100w       442s         White       a:b:c       0.825       3.90       21.84       16.31       3347s       3281s       525s       1125w       448s         White       a:b:c       0.825       3.90       21.84       16.32       3347s       3281s       525s       1125w       448s         (1:1:2)       (4.90)       (22.90)       (17.74)       3281s       525s       1125w       448s         mol, b = dimethylformamide, c = butanol-1, w =wide, m =medium & s = sharp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [Co(NH3)6](CIO4)2                                       | 359.9          | Brown     | a:b:c   | 0.887 | 4.50        | 22.80                                           | 14.98             | 3500m  | 3200w  | 626s  | 1090w   | 450s  |          |
| 359.7       Violet       a.b.c       0.937       4.90       22.80       15.12       3380s       3300s       650s       1100w       442s         (2:1:1)       (5.00)       (23.33)       (16.31)       3347s       3381s       525s       1125w       448s         366.4       White       a:b:c       0.825       3.90       21.84       16.32       3347s       3281s       525s       1125w       448s         (1:1:2)       (4.90)       (22.90)       (17.74)       3281s       525s       1125w       448s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 359.7       Violet       a:b:c       0.937       4.90       22.80       15.12       3380s       3300s       650s       1100w       442s         (2:1:1)       (5.00)       (23.33)       (16.31)       3347s       3281s       525s       1125w       448s         366.4       White       a:b:c       0.825       3.900       21.84       16.32       3347s       3281s       525s       1125w       448s         (1:1:2)       (4.90)       (22.90)       (17.74)       3147s       3281s       525s       1125w       448s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 359.7       Violet       ab:c       0.937       4.90       22.80       15.12       3380s       3300s       650s       1100w       442s         (2:1:1)       (5.00)       (23.33)       (16.31)       3347s       3381s       525s       1125w       448s         366.4       White       a:b:c       0.825       3.90       21.84       16.32       3347s       3281s       525s       1125w       448s         (1:1:2)       (4.90)       (22.90)       (17.74)       a = ethanol, b = dimethylformamide, c = butanol-1, w =wide, m =medium & s = sharp.       4as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                |           | (2:1:1) |       | (2.00)      | (23.33)                                         | (16.40)           |        |        |       |         |       |          |
| (2:1:1) (5.00) (23.33) (16.31)<br>366.4 White a:b:c 0.825 3.90 21.84 16.32 3347s 3281s 525s 1125w 448s<br>(1:1:2) (4.90) (22.90) (17.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2:1:1)       (5.00)       (23.33)       (16.31)         366.4       White       a:b:c       0.825       3.90       21.84       16.32       3347s       3281s       525s       1125w       448s         (1:1:2)       (4.90)       (22.90)       (17.74)       3281s       525s       1125w       448s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2:1:1) (5.00) (23.33) (16.31)<br>366.4 White a:b:c 0.825 3.90 21.84 16.32 3347s 3281s 525s 1125w 448s<br>(1:1:2) (4.90) (22.90) (17.74)<br>a = ethanol, b = dimethylformamide, c = butanol-1, w =wide, m =medium & s = sharp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [Ni(NH <sub>3</sub> )6](CIO4)2                          |                | Violet    | a:b:c   | 0.937 | 4.90        | 22.80                                           | 15.12             | 3380s  | 3300s  | 650s  | 1100w   | 442s  |          |
| 366.4 White a:b:c 0.825 3.90 21.84 16.32 3347s 3281s 525s 1125w 448s (1:1:2) (4.90) (22.90) (17.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 366.4 White a:b:c 0.825 3.90 21.84 16.32 3347s 3281s 525s 1125w 448s<br>(1:1:2) (4.90) (22.90) (17.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 366.4 White a:b:c 0.825 3.90 21.84 16.32 3347s 3281s 525s 1125w 448s<br>(1:1:2) (4.90) (22.90) (17.74)<br>a = ethanol, b = dimethylformamide, c = butanol-1, w =wide, m =medium & s = sharp.<br>r reagent: iodine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                |           | (2:1:1) |       | (2.00)      | (23.33)                                         | (16.31)           |        |        |       |         |       |          |
| (1:1:2) (4.90) (22.90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1:1:2) (4.90) (22.90) (17.74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>(1:1:2) (4.90) (22.90) (17.74)</li> <li>*where : a = ethanol, b = dimethylformamide, c = butanol-1, w =wide, m =medium &amp; s = sharp.</li> <li>Locating reagent: iodine</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Zn(NH <sub>3</sub> )[(ClO <sub>4</sub> ) <sub>2</sub>  | 366.4          | White     | a:b:c   | 0.825 | 3.90        | 21.84                                           | 16.32             | 3347s  | 3281s  | 525s  | 1125w   | 448s  |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *where : a = ethanol, b = dimethylformamide, c = butanol-1, w =wide, m =medium & s = sharp.<br>Locating reagent: iodine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                |           | (1:1:2) |       | (4.90)      | (22.90)                                         | (17.74)           |        |        |       |         |       |          |
| *where : $a = cthanol, b = dimethyliformamide, c = butanol-1, w =wide, m =medium & s = sharp.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Locatint                                                | g reagent      | t: iodine |         |       |             |                                                 |                   |        |        |       |         |       |          |

| 2011       |
|------------|
| January    |
| 16         |
| 13:49      |
| At:        |
| Downloaded |

| ed HTPB-AP Propellants in Presence of Additives |         |
|-------------------------------------------------|---------|
| ming Rate of Non-aluminised H                   | by wt.) |
| Burni                                           | (2%     |

|          | Additive                       | Burning rate (mm/s) | 1 <sub>6</sub> /1* |
|----------|--------------------------------|---------------------|--------------------|
| Nil .    |                                | 1.62                | 1.00               |
| . [Cu(N] | [Cu(NH3)6](ClO4)2              | 2.77                | 1.88               |
| . [Co(N] | [Co(NH3)6](ClO4)2              | 4.93                | 3.35               |
| ININI .  | [Ni(NH3)6](ClO4)2              | 1.99                | 1.35               |
| [Zn(N]   | [Zn(NH <sub>3</sub> )6](ClO4)2 | 2.03                | 1.38               |

| S.No. | Additive                                                             | Burning rate (mm/s) | r <sub>c</sub> /r |
|-------|----------------------------------------------------------------------|---------------------|-------------------|
| ;     | Nil                                                                  | 1.11                | 1.00              |
| 5     | [Cu(NH3)6](ClO4)2                                                    | 1.72                | 1.56              |
| з.    | [Co(NH3)6](ClO4)2                                                    | 1.78                | 1.61              |
| 4     | [Ni(NH3)6](CIO4)2                                                    | 1.34                | 1.22              |
| s.    | [Zn(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub> | 1.32                | 1.20              |

| Downloaded At: 13:49 16 January | 2011       |
|---------------------------------|------------|
| At: 13:49                       | January    |
| At: 13:                         |            |
| At                              | 13:49      |
| Downloaded                      | At:        |
|                                 | Downloaded |

Burning Rate of HTPB-AP Propeliants (non-aluminised) at Various Concentrations of [Co(NH<sub>3</sub>)<sub>6</sub>](ClO<sub>4</sub>)<sub>2</sub>

| Burning rate (mm/s) r <sub>c</sub> /r | 1.62 1.00 | 3.77 2.33 | 4.93 3.35 | 3.09 1.91 | 2.73 1.69 |   |
|---------------------------------------|-----------|-----------|-----------|-----------|-----------|---|
| Percent Additive                      | Nil       | 1%        | 2%        | 3%        | 4%        | Ì |
| S. No.                                | 1.        | 5         |           | 4.        | 5.        | Ň |

Decomposition Temperature (obtained from TG plots given in Figs 1, 2 & 3) for HTPB-AP Propellants (non-aluminised and aluminised) and AP with and without additives

| Sample                                                                       | 1.30% | 1 75% |
|------------------------------------------------------------------------------|-------|-------|
| Non Aluminised Propellants                                                   |       |       |
| 1. Control                                                                   | 360   | 455   |
| 2. [Cu(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub>      | 335   | 425   |
| 3. [Co(NH <sub>3</sub> ) <sub>6</sub> ](CIO <sub>4</sub> ) <sub>2</sub>      | 270   | 315   |
| 4. [Ni(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub>      | 360   | 425   |
| 5. [Zn(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub>      | 325   | 422   |
| <b>Aluminised Propellants</b>                                                |       |       |
| 1. Control                                                                   | 365   | 465   |
| 2. [Cu(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub>      | 342   | 430   |
| 3. [Co(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub>      | 315   | 349   |
| 4. [Ni(NH3)6](CIO4)2                                                         | 375   | 430   |
| 5. [Zn(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub>      | 380   | 425   |
| AP & AP+Additive                                                             |       |       |
| 1.AP                                                                         | 300   | 369   |
| 2. AP + [Cu(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub> | 280   | 340   |
| 3. AP + [Co(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub> | 270   | 320   |
| 4. AP + [Ni(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub> | 285   | 339   |
| 5. AP + [Zn(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub> | 275   | 345   |

235

| 2011       |
|------------|
| January    |
| 16         |
| 13:49      |
| At:        |
| Downloaded |

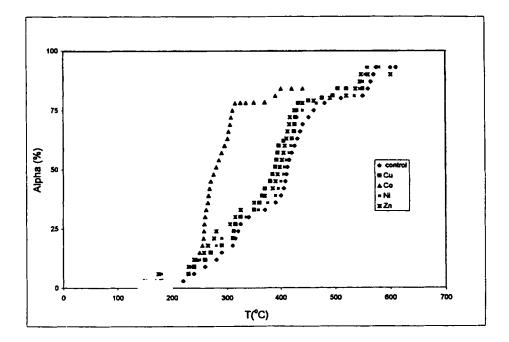
Ignition Delay (t<sub>id</sub>), Ignition Temperature (IT) and Activation Energy for Ignition (E\*) of Non-aluminised Propellants

| Additive                                                             |      |       | (s) <b>7</b> 1) | t <sub>id</sub> (s) at various temperatures ( <sup>*</sup> C) | temperatur | ີ (ງ) ສ     |      |      | IT (°C) for t | £.                     |
|----------------------------------------------------------------------|------|-------|-----------------|---------------------------------------------------------------|------------|-------------|------|------|---------------|------------------------|
|                                                                      | 325  | 350   | 375             | 400                                                           | 425        | 450         | 475  | 500  | of 29 s       | (kJmol <sup>-1</sup> ) |
| Nil                                                                  | DNI  | 116.3 | 65.0            | 56.3                                                          | 47.3       | 43.0        | 37.6 | 30.3 | 421           | 31.3                   |
| [Cu(NH <sub>3</sub> )[ <sub>8</sub> (ClO <sub>4</sub> ) <sub>2</sub> | 6.69 | 59.7  | 54.4            | 38.0                                                          | 37.3       | 29.0        | 28.0 | 22.0 | 422           | 28.9                   |
| [Co(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub> | 80.0 | 67.0  | 50.6            | 47.3                                                          | 38.3       | <b>35.3</b> | 30.3 | 27.0 | 425           | 25.6                   |
| [Ni(NH1)](CIO4)3                                                     | INC  | 81.0  | 60.0            | 58.0                                                          | 49.6       | 38.3        | 30.3 | 29.0 | 420           | 28.1                   |
| [Zn(NH <sub>3</sub> )[(ClO <sub>4</sub> ) <sub>2</sub>               | INC  | 76.0  | 59.6            | 58.5                                                          | 53.3       | 42.5        | 33.3 | 29.3 | 422           | 27.7                   |

| 5  |
|----|
| Ш  |
| E  |
|    |
| 2  |
| ÷. |

Ignition delay (t<sub>id</sub>), ignition temperature (IT) and activation energy for ignition (E\*) of aluminised propellants

| Additive                                                |       |       | t <sub>id</sub> (s) | t <sub>id</sub> (s) at various temperatures ( <sup>a</sup> C) | temperatur | 12 (JC) | l    |      | IT (°C) for t <sub>id</sub> | ₽.J                    |
|---------------------------------------------------------|-------|-------|---------------------|---------------------------------------------------------------|------------|---------|------|------|-----------------------------|------------------------|
|                                                         | 325   | 350   | 375                 | 400                                                           | 425        | 450     | 475  | 500  | of 36s                      | (kJmol <sup>-1</sup> ) |
| Nii                                                     | DNI   | 164.0 | 87.3                | 70.0                                                          | 59.6       | 44.3    | 31.3 | 30.0 | 466                         | 42.6                   |
| [Cu(NH <sub>3</sub> )[3(ClO <sub>4</sub> ) <sub>2</sub> | 107.6 | 90.3  | 62.6                | 54.6                                                          | 47.0       | 37.6    | 30.0 | 27.0 | 471                         | 33.9                   |
| [Co(NH1)%](ClO4)2                                       | 92.0  | 71.6  | 55.6                | 52.0                                                          | 47.0       | 37.2    | 32.3 | 28.0 | 465                         | 26.7                   |
| [Ni(NH,)](CIO,)                                         | IND   | 129.3 | 76.0                | 65.3                                                          | 61.0       | 39.0    | 31.0 | 26.3 | 462                         | 40.9                   |
| [Zn(NH <sub>3</sub> ),[(ClO <sub>4</sub> ) <sub>2</sub> | DNI   | 142.3 | 67.3                | 63.0                                                          | 58.7       | 40.6    | 34.3 | 29.0 | 461                         | 41.4                   |


Downloaded At: 13:49 16 January 2011

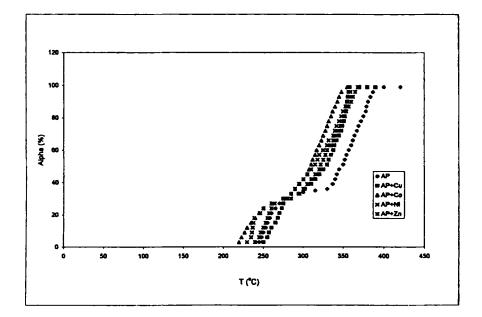
# **TABLE 8**

# Ignition Delay ( $t_{id}$ ), Ignition Temperature (IT) and Activation Energy for Ignition (E\*) of

| <br>t Addiuve. |
|----------------|
| and A          |
| Å              |

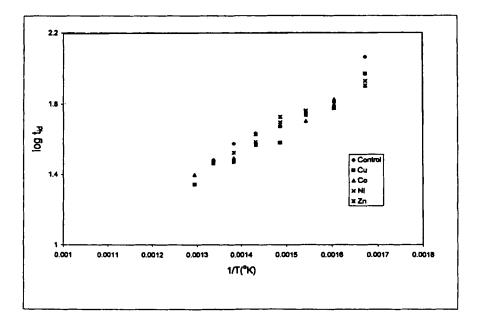
| Additive                                                             |       |       |       | t <sub>id</sub> (s) at va | t <sub>id</sub> (s) at various temperatures ( <sup>o</sup> C) | ratures (°C | 0     |       |       |
|----------------------------------------------------------------------|-------|-------|-------|---------------------------|---------------------------------------------------------------|-------------|-------|-------|-------|
|                                                                      | 325   | 350   | 375   | 400                       | 425                                                           | 450 475     | 475   | 500   | 525   |
| Nil                                                                  | IND   | IND   | IND   | IND                       | 280.0                                                         | 233.0       | 189.5 | 154.3 | 103.0 |
| {Cu(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub> | 163.0 | 139.0 | 114.0 | 79.2                      | 66.0                                                          | 54.4        | 43.0  | 35.0  | 30.0  |
| [Co(NH3)%](CIO4)2                                                    | 157.0 | 131.5 | 86.2  | 75.0                      | 57.3                                                          | 45.5        | 33.3  | 33.0  | 30.0  |
| [Ni(NH <sub>3</sub> ) <sub>6</sub> ](ClO <sub>4</sub> ) <sub>2</sub> | IND   | 220.5 | 170.0 | 120.3                     | 75.0                                                          | 50.0        | 44.3  | 34.6  | 32.0  |
| [Zn(NH3)6](ClO4)2                                                    | 272.0 | 212.0 | 174.0 | <b>6.</b> 99.3            | 65.2                                                          | 57.6        | 50.3  | 40.6  | 35.1  |
| DNI= Did not ignite.                                                 |       |       |       |                           |                                                               |             |       |       |       |




**FIGURE 1** 

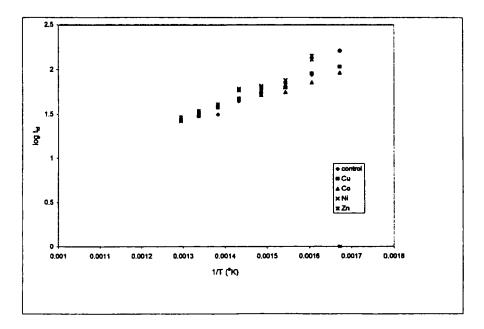
Non-isothermal TG Thermograms of Non-aluminised Propellants Containing Various Additives




## **FIGURE 2**

Non-isothermal TG Thermograms of Aluminised Propellants Containing Various Additives






Non-isothermal TG Thermograms of AP and AP + additives



## **FIGURE 4**

Plots of log tid versus 1/T (°K) of Non-aluminised Propellants



## FIGURE 5

Plots of log tid versus 1/T (°K) of Aluminised Propellants

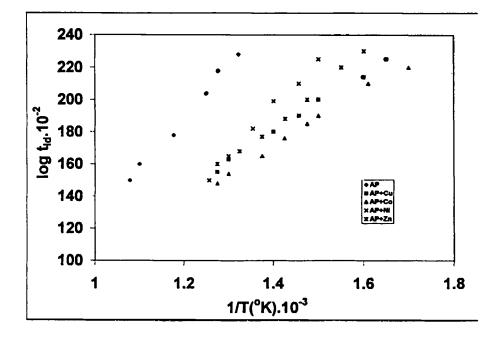



FIGURE 6 Plots of log t<sub>id</sub> versus 1/T (°K) of AP and AP + additives